Comparative analysis of somatic copy-number alterations across different human cancer types reveals two distinct classes of breakpoint hotspots.
نویسندگان
چکیده
Somatic copy-number alterations (SCNAs) play a crucial role in the development of human cancer. However, it is not well understood what evolutionary mechanisms contribute to the global patterns of SCNAs in cancer genomes. Taking advantage of data recently available through The Cancer Genome Atlas, we performed a systematic analysis on genome-wide SCNA breakpoint data for eight cancer types. First, we observed a high degree of overall similarity among the SCNA breakpoint landscapes of different cancer types. Then, we compiled 19 genomic features and evaluated their effects on the observed SCNA patterns. We found that evolutionary indel and substitution rates between species (i.e. humans and chimpanzees) consistently show the strongest correlations with breakpoint frequency among all the surveyed features; whereas the effects of some features are quite cancer-type dependent. Focusing on SCNA breakpoint hotspots, we found that cancer-type-specific breakpoint hotspots and common hotspots show distinct patterns. Cancer-type-specific hotspots are enriched with known cancer genes but are poorly predicted from genomic features; whereas common hotspots show the opposite patterns. This contrast suggests that explaining high-frequency SCNAs in cancer may require different evolutionary models: positive selection driven by cancer genes, and non-adaptive evolution related to an intrinsically unstable genomic context. Our results not only present a systematic view of the effects of genetic factors on genome-wide SCNA patterns, but also provide deep insights into the evolutionary process of SCNAs in cancer.
منابع مشابه
BreCAN-DB: a repository cum browser of personalized DNA breakpoint profiles of cancer genomes
BreCAN-DB (http://brecandb.igib.res.in) is a repository cum browser of whole genome somatic DNA breakpoint profiles of cancer genomes, mapped at single nucleotide resolution using deep sequencing data. These breakpoints are associated with deletions, insertions, inversions, tandem duplications, translocations and a combination of these structural genomic alterations. The current release of BreC...
متن کاملIntegrative epigenetic and genetic pan-cancer somatic alteration portraits
Genetic and epigenetic alterations are required for carcinogenesis and the mutation burden across tumor types has been investigated. Here, we investigate epigenetic alterations with a novel measure of global DNA methylation dysregulation, the methylation dysregulation index (MDI), across 14 cancer types in The Cancer Genome Atlas (TCGA) database. DNA methylation data-obtained using Illumina Hum...
متن کاملIntegrative analysis reveals clinical phenotypes and oncogenic potentials of long non-coding RNAs across 15 cancer types
Long non-coding RNAs (lncRNAs) have been shown to contribute to tumorigenesis. However, surprisingly little is known about the comprehensive clinical and genomic characterization of lncRNAs across human cancer. In this study, we conducted comprehensive analyses for the expression profile, clinical outcomes, somatic copy number alterations (SCNAs) profile of lncRNAs in ~7000 clinical samples fro...
متن کاملFunctional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes.
A large database of copy number profiles from cancer genomes can facilitate the identification of recurrent chromosomal alterations that often contain key cancer-related genes. It can also be used to explore low-prevalence genomic events such as chromothripsis. In this study, we report an analysis of 8227 human cancer copy number profiles obtained from 107 array comparative genomic hybridizatio...
متن کاملAn integrative and comparative study of pan-cancer transcriptomes reveals distinct cancer common and specific signatures
To investigate the commonalities and specificities across tumor lineages, we perform a systematic pan-cancer transcriptomic study across 6744 specimens. We find six pan-cancer subnetwork signatures which relate to cell cycle, immune response, Sp1 regulation, collagen, muscle system and angiogenesis. Moreover, four pan-cancer subnetwork signatures demonstrate strong prognostic potential. We also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 21 22 شماره
صفحات -
تاریخ انتشار 2012